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Abstract
We study the dynamics of a particle in continuous time and space, the
displacement of which is governed by an internal degree of freedom (spin).
In one definite limit, the so-called quantum random walk is recovered but,
although quite simple, the model possesses a rich variety of dynamics and goes
far beyond this problem. Generally speaking, our framework can describe the
motion of an electron in a magnetic sea near the Fermi level when linearization
of the dispersion law is possible, coupled to a transverse magnetic field. Quite
unexpected behaviours are obtained. In particular, we find that when the initial
wave packet is fully localized in space, the Jz angular momentum component is
frozen; this is an interesting example of an observable which, although it is not
a constant of motion, has a constant expectation value. For a non-completely
localized wave packet, the effect still occurs although less pronounced, and the
spin keeps for ever memory of its initial state. Generally speaking, as time
goes on, the spatial density profile looks rather complex, as a consequence
of the competition between drift and precession, and displays various shapes
according to the ratio between the Larmor period and the characteristic time
of flight. The density profile gradually changes from a multimodal quickly
moving distribution when the scattering rate is small, to a unimodal standing
but flattening distribution in the opposite case.

PACS numbers: 03.67.Lx, 05.40.Fb, 72.10.Fk, 72.25.−b, 85.75.−d

1. Introduction

The term quantum random walk was coined some time ago by Aharonov and Davidovich
[1] to qualify the motion of a quantum particle moving either left or right according to the
value of the Jz component of its spin. As such, this is completely different from the quantum
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Brownian motion problem, in which one fully describes in a quantum framework the motion
of a single (light) particle moving in a bath of heavy particles—a quantum version of the
classical Brownian motion. This latter problem has been the subject of many papers in the
past, revivified in the 1980s by the pioneering work of Caldeira and Leggett (for a review,
see Leggett et al [2]), showing that for the so-called ohmic coupling with the bath, dynamical
symmetry breaking occurs above a given threshold. On a more elementary level, simple
models show how the classical Brownian motion can be generalized to the quantum world,
although long time scales (and algebraic behaviours) appear in correlation functions at small
enough temperature, as shown by Aslangul et al [3]. We shall adopt here the recent meaning
as proposed by Aharonov and Davidovich, shortened to QRW in the following.

This latter problem is presently the subject of intense activity, following the basic papers
by Ambainis et al [4], Nayak and Vishwanath [5], Dür et al [6] and Konno [7] (for a recent
comprehensive review, see the preprint by Kempe [8]). The basic motivation lies in the fact
that QRW yields a dynamics at the opposite of classical random walk: for a spin 1/2 particle,
and a symmetric initial spin state with definite phases (see below for details), the probability
density in space PQRW(x, t) displays two well-defined peaks, moving away linearly in time
from the starting place. This is to be contrasted with the t1/2 spreading of the classical packet,
the particle staying (in the average) at its starting point when no drift is present. It can be said
that QRW, except for oscillations in spatial density, displays the same basic features as the
classical non-diffusive motion with a drift (which can be obtained from the biased diffusion
equation ∂P

∂t
= −�∇[�vP − D �∇P ]—in the (singular) limit D → 0, as explained for instance in

the book by Gardiner [9]), when the velocity itself is a random variable assuming two values
±v0 with definite probabilities. This rather intuitive picture has been firmly grounded by the
recent work of Blanchard and Hongler [10].

Due to the quantum nature of the walk, all steps are strongly correlated (as contrasted to
classical motion), as it is also the case for repeated measurements yielding the Zeno paradox
theoretically found by Misra and Sudarshan [11] and observed by Itano et al [12]; this means
that specific ever-lasting correlations are always relevant. One consequence is that the linear
dimension of the visited space increases linearly in time, i.e. much more rapidly for QRW
than for classical motion. It is hoped, on a somewhat speculative level, that Monte Carlo
algorithms could be improved by drawing benefit of this fact (see, e.g., Kempe [13]).

We adopt here a more general point of view. Indeed, we define a simple model containing
a single parameter, denoted α in the following, which is essentially the product of the spin-flip
rate by the time of flight in space. As shown below, the limit α → 0 can be viewed as
the continuous space–time version of the conventional QRW. Out of this limiting case, the
model can describe the dynamics of an electron near the Fermi level (once the dispersion
law has been linearized, ε(k) → ±h̄(k − kF)vF as is done e.g. in the Luttinger model [14]),
moving in a magnetic sea created by impurities, or coupled to nuclear spins (Vagner [15]).
Elastic collisions with the magnetic background can flip the spin of the moving electron and,
simultaneously, change its velocity from +vF to −vF. Alternatively, such a reversal can be
induced by a transverse magnetic field forcing the spin to precess harmonically at the Larmor
frequency ω. As a whole, spin and orbital degrees of freedom are coupled, yielding intrication
of the state as time goes on, and competition between precession and translation in space. This
produces interesting effects; the first one (and probably the most unexpected) is freezing of
the precession when the initial packet is quite narrow—an effect which could have interesting
applications in spintronics, as well in two-dimensional systems (McGuire et al [16]), in carbon
nanotubes (Yang et al [17]), in quantum dots (Levitov and Rashba [18]) and in semiconductors
(Dyakonov [19]). A second characteristic feature is the ∝t spreading of the wavepacket which
arises in any case, even when the precession is extremely rapid: because of the latter, the
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particle has no time to choose between right and left moves, but dispersion still occurs, and
very quickly as compared to classical random motion.

Obviously, the physical relevance of our model is subjected to small deviations around kF.
On the other hand, it is hoped that the basic (and surprising) results found below retain some
relevance even with such restrictions, and at least can take place on space and time scales to be
specified in real life. It is worthy to note that, provided such a physical picture is meaningful,
α becomes an easily tunable parameter by varying either the magnetic field, or the filling ratio
of the band, or the density of the magnetic diffusing centres.

This paper is organized as follows. We first define the model (section 2), explicitly show
the relation between our model and QRW, and give a qualitative discussion of limiting cases.
We then briefly derive the equations giving the time evolution of the density for an arbitrary
spin J (section 3), on which the spin locking due to space confinement in the α → 0 limit
can be directly shown. This fact is confirmed by a detailed study of the average value Jz

section 4). Then, we focus on the J = 1
2 case (section 5), and calculate the density profile

P(x, t), which displays many various shapes, some unexpected when the two time scales
related to the Larmor precession and the displacement in space are of the same order of
magnitude. Eventually, conclusions are drawn and hints for future work are given. In the
appendix, details are given on the asymptotic analytical work required to get insight on the
features of the probability density.

2. Model and qualitative discussion

For a spin �J particle, our model Hamiltonian reads

H = ωJy + h̄−1�v · �̂pJz. (2.1)

In this expression, ω is the spin-flip rate due to scattering on impurities, or the Larmor frequency
due to a transverse magnetic field along the y direction. �v is the (scalar) quantity defining
the velocity scale, �̂p is the momentum (p̂ = −ih̄ �∇ in the q-representation). Despite some
similarity at first glance, the Hamiltonian (2.1) has nothing to do with the Dirac Hamiltonian, in
which the momentum is coupled to the Dirac �α matrices; indeed, the angular momentum (spin)
is not given there by �α and, in addition, the problem has here the dimensionality 2J + 1 in spin
space, instead of four in the Dirac theory. Also note that, in its one-dimensional form, with a
space-dependent ω and for J = 1/2, this Hamiltonian has been used in various contexts such
as inhomogeneous superconductors (de Gennes [20]) and solitons in polyacetylene (Takayama
et al [21]).

In the following, we restrict ourselves to one-dimensional space; calling Ox the line on
which the particle moves, the Hamiltonian (2.1) simplifies to

H = ωJy + h̄−1vp̂Jz, p̂ = −ih̄
∂

∂x
. (2.2)

Note that the label x of direction of motion and the three directions defining the components
Jx, Jy and Jz generally have no relations between them. Also note that the ‘kinetic’ term is
invariant under time reversal.

2.1. Continuous limit of the quantum Brownian walk

In order to perform the continuous limit of QRW, let us recall the basic formalism. In
the original model [6], the spin- 1

2 particle hops on a one-dimensional infinite lattice (lattice
spacing a, n ∈ Z) from one site to the two first-neighbours, either right or left according to the
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value + or − of the Jz component. In obvious notations, the operator S generating this spatial
motion is

S = |+〉〈+| ⊗
∑

n

|n + 1〉〈n| + |−〉〈−| ⊗
∑

n

|n − 1〉〈n|. (2.3)

Once a jump is done, the spin is changed by the action of a Hadamard matrix T acting on the
|±〉 spin states, which we choose of the following form:

T = 1√
2

[
1 −1
1 1

]
. (2.4)

Thus, one step of the motion is generated by the product T S, which reflects the basic sequential
nature of the walk. As a whole, for integer times t, the state |�(t)〉 obeys the following equation:

|�(t + 1)〉 = T S|�(t)〉 ≡ HQRW|�(t)〉. (2.5)

Performing now a Fourier transformation in space
(|k〉 = N−1/2 ∑

n eikna|n〉), one obtains

HQRW =
∑

k

e−ih̄−1 π
2 Jy e−ih̄−1kaJz |k〉〈k|. (2.6)

Let us now formally replace t + 1 by t + �t, π
2 by ω�t in the first exponential; taking the limit

a → 0,�t → 0, a
�t

= Const ≡ v, one has

HQRW → 1 +
�t

ih̄

∑
k

(ωJy + kvJz)|k〉〈k|. (2.7)

Going back to direct space, and taking now the limit lim�t→0
1

�t
[|�(x, t + �t)〉 − |�(x, t)〉],

(2.5) yields

ih̄
∂

∂t
|�(x, t)〉 = H |�(x, t)〉 (2.8)

where H is the Hamiltonian given in (2.2). This Schrödinger equation retains the two essential
features of QRW: the direction of the motion is determined by the value of the Jz component,
and the latter is not a constant of motion due to the transverse magnetic field (external or
intrinsic) to which the particle is coupled though the operator Jy .

Yet, a basic difference exists between HQRW and H, due to the fact that in the discrete
version, the particle jumps, and then the spin is changed by T: as already mentioned, the rules
of the game are essentially sequential, allowing us to state that the spin changes slowly as
compared to the time of flight. In contrast, with H given in (2.2), both motion and spin-flip
occur simultaneously. This means that, within the framework defined by H, one expects to
recover the quantum random motion only when the Larmor frequency ω is quite small as
compared to the time scale of the displacement. As it stands, the Hamiltonian H thus defines
a model for which ordinary QRW is just one limit.

One additional ingredient is required, namely the initial state, which will be chosen of the
spin-space separate form:

|�(x, t = 0)〉 = ψ(x) ⊗
+J∑

M=−J

cM |M〉 ≡ ψ(x) ⊗ |χ〉. (2.9)

|M〉 is the eigenstate of Jz with the eigenvalue Mh̄; for physical purpose, ψ(x) is chosen as
a localized even function with a width σ , assuming real values in order to avoid any built-in
inessential drift; for explicit calculations, we retain the Gaussian normalized form:

ψ(x) = (
√

2πσ)−1/2 e−x2/(4σ 2). (2.10)
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Obviously, the state becomes intricate as time goes on, and one generally has at time
t > 0:

|�(x, t)〉 =
+J∑

M=−J

ψM(x, t)|M〉. (2.11)

The main goal is to find the probability density in space, given by

P(x, t) =
+J∑

M=−J

|ψM(x, t)|2. (2.12)

The model is now completely defined, and involves just one dimensionless parameter,
called α in all the following:

α = σω

v
. (2.13)

When α is large, the spin undergoes many Larmor precessions during a relatively small
displacement in space; in contrast, α small means that the spin precesses quite slowly when
moving in space.

2.2. The limiting cases

Let us now briefly describe the limiting cases. As explained above, the α → 0 limit must
reproduce QRW. More precisely, when the Larmor period becomes much larger than any other
relevant time scale, the limit of the spatial density is the (2J + 1)-modal distribution:

lim
α→0

P(x, t) =
+J∑

M=−J

|cM |2|ψ(x − Mvt)|2 ∀t (2.14)

(for J = 1/2, the two-peak splitting of ordinary QRW is recovered). Such a density trivially
gives 〈x〉(t) = vt

∑
M h̄−1〈Jz〉(0) and �x2(t) = (vt)2h̄−2�J 2

z (0). The ∝t2 increase of its
mean-square deviation merely reflects the fact that each peak of the density moves away
linearly in time due to the persisting multimodal character of the density profile, which is
frankly different from spreading in the usual sense. Note that, in the limit α = 0, the relative
phases of the cM play no role, a symmetry which is broken for any finite α: in the general
case, these phases are essential (see below) and, in particular, determine whether the density
P(x, t) is symmetric in space or not.

On the other hand, when α goes to infinity, spin and space degrees of freedom become
decoupled. Thus the spin stays immobile, and simply precesses within its initial wave packet,
which remains as it stood at the beginning:

lim
α→+∞ P(x, t) = |ψ(x)|2 ∀t . (2.15)

It will be seen in the following that these two trivial limits are indeed singular, especially the
limit α → 0 (because the velocity v is in factor of the highest derivative in H); this can be
considered as a first symptom of the richness of the dynamics for any finite α. Anyway, the
above limiting behaviours of P(x, t) are expected to hold approximately true in the general
case for times t 
 2π

ω
and t 
 σ

v
, respectively and mimic the actual dynamics.

3. Formal expression of the density

The Schrödinger equation (2.8) is formally easily solved by going to the p-representation. It
then reads

ih̄
∂

∂t
|�(p, t)〉 = (ωJy + h̄−1vpJz)|�(p, t)〉, (3.1)
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where |�(p, t)〉 is the p-representation of the state at time t (p is now a scalar). The time-
evolution operator U(p, t) is such that

|�(p, t)〉 = U(p, t)|�(p, 0)〉, (3.2)

where |�(p, 0)〉 ≡ φ(p) ⊗ |χ〉 is the p-representation of the initial state (2.9); with the
Gaussian (2.10), one has

φ(p) =
(

2σ

h̄
√

2π

) 1
2

e−σ 2p2/h̄2
. (3.3)

By introducing the p-dependent unitary transformation R(p) = e(ih̄)−1θ(p)Jx , U(p, t) assumes
the form

U(p, t) = R†(p) e−ih̄−1�(p)tJzR(p), (3.4)

where

�(p) = [ω2 + (vh̄−1p)2]
1
2 , (3.5)

cos θ(p) = vh̄−1p

�(p)
, sin θ(p) = ω

�(p)
. (3.6)

This allows us to write down the formal expression of the Fourier transform of the density
probability, P(k, t) = ∫ +∞

−∞ dx eikxP (x, t), as the following:

P(k, t) =
∫ +∞

−∞
dp φ∗

+φ−〈χ |U †
(

p +
h̄k

2
, t

)
U

(
p − h̄k

2
, t

)
|χ〉, (3.7)

where φ± = φ(p ± h̄k/2). For arbitrary J , such an expression seems untractable as it stands,
but it allows us to look at the limiting case α → 0, which can be obtained by assuming a fully
localized packet (σ = 0+). Starting with the initial Gaussian wavepacket (2.10), a careful
limiting procedure yields

lim
α→0

P(k, t) =
√

2

π

∫ +∞

−∞
dξ e−2ξ 2〈χ |eikvth̄−1Jz |χ〉. (3.8)

From this, one immediately obtains the limiting expression of the probability density in direct
space:

lim
α→0

P(x, t) =
+J∑

M=−J

|cM |2δ(x − Mvt). (3.9)

This says that the initial narrow packet splits off in 2J + 1 components, each of them going
away from the starting point with its own velocity Mv. Expression (3.9) holds true for any J

and any initial spin state.
This result is at first surprising (it would also trivially occur in the absence of magnetic

background or of the transverse field (ω = 0)—which also gives α = 0). It means that extreme
confinement (σ = 0) of the spin forces the component Jz to have a constant expectation value,
although Jz is not a constant of motion due to the fact that ω �= 0. Obviously enough, one
can question the validity of the above limiting procedure, because the value α = 0 is indeed
singular; in fact, the above result, which provides an oversimplified picture of the spin-freezing
phenomenon, can be easily confirmed by analysing an innocent-looking observable (indeed
Jz itself), directly obtained by the Heisenberg equations. This is done in the following section
for arbitrary α.
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4. Dynamics of the coordinate and of the component Jz

In order to get more insight into the above result, we now solve the Heisenberg equations of
motion. We write

ẋH = vh̄−1JzH, ṗH = 0, J̇ zH = −ωJxH. (4.1)

J̇ xH = ωJzH − h̄−1vpHJyH, J̇ yH = h̄−1vpHJxH. (4.2)

These equations can be readily integrated to yield

JzH(t) = �e(t) · �J , (4.3)

xH(t) = x + vh̄−1 �T (t) · �J , (4.4)

where �J (resp. x) coincides with �J H(0) (resp. xH(0) and where the components of the scalar
vectors �e(t) and �T (t) are

ex(t) = −sin θ sin �t,

ey(t) = sin θ cos θ(1 − cos �t), (4.5)

ez(t) = cos2 θ + sin2 θ cos �t, (4.6)

and Tu(t) = ∫ t

0 eu(t
′) dt ′. The mean-square deviation of the coordinate is

�x2(t) = �x2(0) + (vh̄−1)2
∑
u,v

(〈TuTvJuJv〉 − 〈TuJu〉〈TvJv〉), (4.7)

where the brackets denote averages over the initial state (see (2.9) and (3.3))—remember that
� and θ are functions of p, see (3.5) and (3.6), and enter in a convolution with the Fourier
transform of (2.10). For any separate initial state, the averages factorize: 〈TuJv〉 = 〈Tu〉〈Jv〉
and so on.

These results allow a straightforward discussion displaying the strange features of the
dynamics, especially the rather counterintuitive role of the initial spin state on the subsequent
motion, especially on the symmetry of the probability density, as already discussed (see, e.g.,
the analysis by Kempe [8]).

Close inspection first shows the essential role of the phases of the coefficients cM appearing
in expansion (2.9). Indeed, it is readily seen that when the initial spin state is an eigenvector
of Jy , then 〈Jz〉(t) and 〈x〉(t) are constant (and thus vanish at any time), whereas �x2 is still
∝t2. Another consequence is that the density probability P(x, t) is symmetric in space in this
case, and only in this case. Thus, the dynamics, and the parity of the spatial density, strongly
depend on the relative phases of the coefficients cM defining the initial spin state (see (2.9)),
not only of the weights |cM |2—a feature which clearly separates the general α-finite case from
the α = 0+ limit. For any other preparation, P(−x, t) �= P(x, t) and the expectation values
〈Jz〉(t) and 〈x〉(t) do vary in time, as exemplified below for a definite preparation.

Indeed, let us assume that the initial spin state is the eigenstate |M〉 of Jz (Jz|M〉 =
Mh̄|M〉); then, the expectation values at time t are

〈Jz〉(t) = Mh̄〈cos2 θ + sin2 θ cos �t〉, (4.8)

〈x〉(t) = Mvt

〈
cos2 θ + sin2 θ

sin �t

�t

〉
, (4.9)

�x2(t) = σ 2 + v2

[
1

2
[J (J + 1) − M2]

〈
T 2

x + T 2
y

〉
+ M2

(〈
T 2

z

〉 − 〈Tz〉2
)]

. (4.10)
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Figure 1. Variation of the time average η (see (4.13)) as a function of α.

In the preceding equations, 〈•〉 denotes the average over the orbital variable:

〈•〉 =
√

2

π

σ

h̄

∫ +∞

−∞
(•) e−2(σp)2/h̄2

dp. (4.11)

In particular, the expectation value of Jz is given by 〈Jz〉(t) = η(t)〈Jz〉(0) with

η(t) =
√

2

π

∫ +∞

−∞

e−2ξ 2

α2 + ξ 2

(
ξ 2 + α2 cos

√
α2 + ξ 2

ωt

α

)
dξ (4.12)

(note that, with our definitions, ωt
α

= vt
σ

). η(t) (obviously bounded by ±1) is clearly an
oscillating function of time. This expression allows us to discuss the unexpected behaviour
of the average value of Jz when α varies. First, let us look at the time-average value of η,
η ≡ limt→+∞ 1

t

∫ t

0 η(t ′) dt ′. One readily finds

η = 1 −
√

2πα e2α2
[1 − �(

√
2α)] (4.13)

where � is the probability integral [22]. η has the following behaviours:

η �



1 − √
2πα α 
 1

1

4α2
α � 1.

(4.14)

In addition, it is readily seen that 1 − 2η � η(t) � 1. Thus, for α small, η(t) oscillates
around a value which is quite close to one, showing that 〈Jz〉 becomes nearly constant in time.
In contrast, for α large, the oscillation takes place symmetrically around a quite small value.
The variation of η as a function of α is given in figure 1.

At short times, one has η(t) � 1 − 1
2 (ωt)2. The behaviour of η(t) at large times is easily

found by using a saddle-point method. We find

η(t) � η +
2α√
ωt

cos
(
ωt +

π

4

)
, t � min

(σ

v
, ω−1

)
. (4.15)

The envelope of the oscillation around the time averaged value η thus decreases as t−1/2. The
variation of η(t) at any time is plotted in figure 2 for two values of α.

These results confirm the confinement locking of the spin: whereas Jz is not a constant
of motion, narrowing the width of the initial wave packet yields an expectation value which is
less and less varying in time.

From (4.9), the average position of the particle is easily calculated and can be written as

〈x〉(t) = Mvt

[
η +

α3

ωt

√
2

π

∫ +∞

−∞

e−2ξ 2

(α2 + ξ 2)3/2
sin

√
α2 + ξ 2

ωt

α
dξ

]
. (4.16)
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Figure 2. Variation in time of η(t) for a narrow initial wave packet (left) and for a large one (right).
For an infinitely narrow wave packet, 〈Jz〉 remains constant. The unit of time is one period T of
the Larmor precession.

-1.0

0.0

1.0

2.0

3.0

4.0

0.0 5.0 10.0 15.0 20.0

α  = 2.0

α = 3.0

t/ T

<x>(t)

0.0

10.0

20.0

30.0

40.0

50.0

0.0 2.0 4.0 6.0 8.0 10.0

α  = 0.5

α = 1.0
t/ T

<x>(t)

Figure 3. Variation in time of 〈x〉(t) for four values of α, when the initial state is an eigenvector
of Jz. Note the different horizontal and vertical scales.

This represents a drift motion, with a damped-in-time (∝t−1) oscillation around the central
position Mvtη, imaging the forward/backward motion of the particle within its wavepacket
as the spin precesses, causing inversion of the velocity.

It is readily seen that 〈x〉(t) is bounded for any time and any α; one finds

Mvt[η − (ωt)−1] < 〈x〉(t) < Mvt[η + (ωt)−1]. (4.17)

This shows that, for such a preparation, the motion is always ballistic and simply approaches
〈x〉(t) � Mηvt at times which are large compared to the precession time scale. However,
note that the effective velocity ηv decreases rapidly when α becomes large (see (4.14) and
figure 3). In the asymptotic regime, one precisely has

〈x〉(t) � Mvt

[
η +

2α

(ωt)3/2
sin

(
ωt +

π

4

)]
. (4.18)
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Note that in the limit α → 0 but for an arbitrary initial spin state, one has 〈Jz〉(t) = 〈Jz〉(0)

and

〈x〉(t) = vth̄−1〈Jz〉(0), �x2(t) = v2t2h̄−2�J 2
z (0), (4.19)

in agreement with (3.9). The ∝t2 increase of the mean-square dispersion merely reflects
the fact that in this limit, the density is just the superposition of the 2J + 1 Dirac functions
δ(x − Mvt).

Obviously, the mean-square deviation gives a first impression about the spatial density,
but the qualitative discussion given above convinces one that a given t2 increase of �x2(t)

can be realized in a variety of ways, ranging from two moving sharp peaks to a Gaussian-like
flattening in situ. Clearly, a more precise analysis of the profile is required, and this is done in
the following section for the J = 1/2 case.

5. Time evolution of the spatial density in the spin 1
2 case

In the J = 1/2 case, the evolution operator can be easily written explicitly. After some
algebra, we find the propagator U(p, t) as the following:

U(p, t) = cos
�(p)t

2
1 − i sin

�(p)t

2
cos θ(p)σz − i sin

�(p)t

2
sin θ(p)σy (5.1)

where the σu are the Pauli matrices. From this, one readily obtains the amplitudes ψ±(x, t),
given by

ψ±(x, t) = 1√
2πh̄

∫ +∞

−∞
dp e

i
h̄
px

[(
cos

�(p)t

2
∓ i cos θ(p) sin

�(p)t

2

)
c±

∓ sin θ(p) sin
�(p)t

2
c∓

]
φ(p). (5.2)

Close inspection of the integrals in (5.2) again reveals that for any initial state which is even
and real, the density P(x, t) = ∑

ε=±|ψε(x, t)|2 is even only when |c+|2 = |c−|2 and c+
c−

purely imaginary, i.e. when the initial spin state is an eigenvector of Jy . In all other cases,
P(−x, t) �= P(x, t).

In the following, we restrict to the symmetric case, taking c+ = 1√
2

and c− = i√
2
,

corresponding to |χ〉 = |+〉y . Then, the density can be written as follows:

P(x, t) = 1√
2πσ

∑
r=1,2,3

|Ir(x, t)|2, (5.3)

where the three quantities Ir are given integrals. With the Gaussian wave packet (3.3), the
latter explicitly write

(
X = x

σ

)

I1(x, t) = α√
π

∫ +∞

−∞
dξ

e−ξ 2+iξX√
α2 + ξ 2

sin
√

α2 + ξ 2
vt

2σ
, (5.4)

I2(x, t) = 1√
π

∫ +∞

−∞
dξ e−ξ 2+iξX ξ√

α2 + ξ 2
sin

√
α2 + ξ 2

vt

2σ
, (5.5)

I3(x, t) = 1√
π

∫ +∞

−∞
dξ e−ξ 2+iξX cos

√
α2 + ξ 2

vt

2σ
. (5.6)

These expressions allow an easy numerical calculation of the density P(x, t) in various cases;
the results are shown in figure 4 and display the extreme variety of P(x, t) when the single
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Figure 4. Snapshots of the (symmetric) density profile at successive times t for various values of
the parameter α; each curve is labelled by t/T where T is the Larmor period 2π/ω. The abscissa
unit is the width σ of the initial Gaussian packet. Note the different scales from one drawing to
another.

parameter α varies. For α small (remember this corresponds to QRW), the (two) peaks
structure is clearly visible, and displays small satellites at the back of the packet. They are
easily understood as arising from a (quantum) path in which the particle has undergone a
small number of precessions, a fact which is confirmed by the α = 1/3 curves: it can be
checked that the number of peaks at time t is close to t/T , where T is the Larmor period. The
extreme-right peak arises when the particle does not precess at all, then comes a secondary
peak associated with one precession, and so on. When α increases, the structure is still present
but diminishes quickly as time goes on. Eventually, for α large enough, the profile does not
display any structure and vaguely looks like a standing Gaussian wave packet. As a whole, the
profile is rather sensitive to α; also note that P(x, t) remains notably non-zero in the central
region even at large times (see below, especially (5.9)).

Approximate analytical expressions of the density can also be obtained (see appendix).
For α 
 1, we find that

P(x, t) � α2

16(2π)3/2

∣∣∣∣
∫ +∞

−∞
dX′ e− 1

4 (X−X′− vt
2 )2

H
(2)
1 (X̃′)

∣∣∣∣
2

(5.7)

where X̃′ = α

√
vt
σ

|X′| and where H
(2)
1 is the conventional Hankel function. Details given in

the appendix allow us to understand that in this case (α 
 1), the two main peaks moving
with the velocity v/2 are accompanied by small satellites, corresponding to those quantum
paths with a few precessions.
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Figure 5. Variation as a function of α of the velocity V of the standard deviation �x(t) (see
(5.12)).

On the other hand, for α � 1, one finds the plain Gaussian distribution:

P(x, t) � 1√
2π�(t)

e− x2

2�(t)2 , � = σ

[
1 +

(
v2t

4σ 2ω

)2
]1/2

. (5.8)

Because the precession is rapid, the particle does not move in the mean, but the effect is not
averaged to zero and produces a linear in time increase of the width of the distribution, as
contrasted to the characteristic ∝t1/2 Brownian spreading.

Generally speaking, it appears that, for any α, the central region remains populated due to
the fact that P (x = 0, t) decreases rather slowly in time. Indeed, a stationary-phase argument
shows that

P(x = 0, t) � 1√
2π�(t)

∼ t−1 ∀t � Max

(
2π

ω
,
σ

v

)
. (5.9)

As for any initial state, the mean-square dispersion of the coordinate always increases
∝t at large times, and can be readily calculated for the symmetric case, using the results of
section 4. In particular, one finds

lim
t→+∞

�x(t)

t
= 1

2
〈cos4 θ〉1/2v ≡ V (α)v, (5.10)

with

〈cos4 θ〉 = 1 + α2 −
√

2πα(3 + 4α2) e2α2
[1 − �(

√
2α)], (5.11)

where � again denotes the probability integral [22]. V (α) is a monotonically decreasing
function of α (see figure 5), with the following behaviours:

V (α) �




1

2

(
1 − 3

√
π

2
α2

)
α 
 1

√
3

8α2
α � 1.

(5.12)

This means that, apart from small damped in time oscillations, the motion is essentially
ballistic, with a velocity V (α) going to zero when the precession frequency increases. With
the reduced units used in figure 4, the width of the distribution is 2π/(αV (α))(t/T ); rough
estimates show that the gross features of the density profile are in agreement with the latter
expression for the standard deviation.

Note that (5.12) says that V (α) goes to 1/2 in the limit α = 0+, a result which is slightly
different from that obtained by Konno [23], and rederived by Grimmett et al [24], who found
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Figure 6. Variation in time of the Shannon entropy S(t) (left). The right part shows the ratio
S(t)/ ln t , which becomes a constant at large times.

that the velocity tends toward
√

(2 − √
2)/2 � 0.541 19 when the time t goes to infinity.

The small numerical discrepancy between the latter result and that expressed by (5.12) can
have several origins. First, remember that it is a common fact that discrete versus continuous
versions of the same problem differ in numerical details, usually considered as irrelevant,
especially when all numbers are of the same order of magnitude. Second, it must be realized
that two limits are here involved, namely α → 0 and t → ∞. The lattice version corresponds
to the limit α → 0, so that in a discrete framework, the limit t → ∞ is necessarily the last
one to be taken. On the opposite, result (5.12) is obtained by looking at the asymptotics
t → ∞ in the continuous version and, as a particular case, yields V (0+) = 1/2 when alpha
goes to zero. In other words, the order of limits is exchanged in the two procedures; no obvious
reason guarantees that the two results should coincide, all the more since the limit α → 0 is
singular, as emphasized above.

As a final measure of the profile, let us analyse the Shannon entropy, defined as

S(t) = −
∫ +∞

−∞
dx P (x, t) ln P(x, t). (5.13)

Three typical plots are given in the left part of figure 6, showing that S(t)—an ever-increasing
function in time—changes gently with α and does not display a transition reflecting the
bimodal/unimodal cross-over. In addition, it is seen that S(t) ∝ ln t at large times, which
means that, as is often the case, S(t) ∝ ln �x(t).

6. Conclusions

In this paper, we presented a simple model describing the dynamics of a particle with a linear
dispersion law, when the direction of motion is determined by the value of the spin, the former
being able to flip due to magnetic impurity scattering or by coupling with an external field.
The resulting intrication between orbital and spin degrees of freedom yields a rather rich and
complex dynamics with unexpected features, governed by the single parameter α = σω/v

measuring the ratio between the time of flight and the Larmor period T.
The most surprising fact is spin-freezing when the width of the initial wave packet becomes

quite small: narrowing the latter produces stronger and stronger shielding of the spin which
can thus keep for ever the memory of its initial value. This robustness could be of interest
in applications where the spin value carries sensitive information, e.g. in spintronics and in
quantum spin computation.
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Besides this remarkable fact, the density profile itself shows up a variety of shapes which
reflect the competition between motion in space and Larmor precession. In the intermediate
case where the characteristic time of flight σ/v is of the order of the precession period, the
profile displays a rich structure corresponding to the various quantum paths with zero, one,
two, . . . , precessions: the number of rotations can be directly read by looking at the maxima
of the density. In one extreme case (α 
 1), one recovers conventional quantum random
walk in a space–time continuous framework, and its characteristic multimodal (bimodal for
J = 1/2) distribution. In the opposite case α � 1, the particle hardly moves in the mean
because of rapid precession, but the width of the packet increases proportionally to the time t.

Another interesting fact, already discussed in the past in the restricted QRW limit, is
the role of the phases present in the initial spin state: it turns out that the spatial probability
density is even only when the initial state is an eigenvalue of the transverse spin Jy , i.e. when
the coefficients have the same modulus and a definite phase relationship. For an infinitely
narrow wave packet, this specific property disappears, and the subsequent motion becomes
phase independent: we do not have a simple explanation of this phase symmetry breaking.

In all cases, the RMS deviation of the coordinate �x(t) increases like t, much faster than
in classical random motion. This universal increase integrates in fact various shapes, from
sharp rapidly moving well-defined peaks, to a standing flattening Gaussian distribution. The
same can be said about the Shannon entropy, which does not show up any cross-over when α

varies; it essentially behaves like ln �x, as is often the case, and thus increases ∝t at times
large enough.

Some of our results are restricted to the J = 1/2 case. Obviously enough, generalization
to arbitrary J is appealing; in particular, it would be interesting to look at the high-J (quasi-
classical limit), especially in order to analyse the above-mentioned phase symmetry-breaking
phenomenon. Furthermore, it would be interesting to check whether the above shielding effect
is robust against phase decoherence, i.e. to develop simple models incorporating coupling to
a quantum or classical bath. Work in these directions is in progress.
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Appendix

We now briefly sketch the methods allowing us to obtain the approximate expressions (5.7)
and (5.8) given in the main text. In all cases, the approximations start with the expression of
the time-evolution operator U, and preserve unitarity.

Let us begin with the easiest case, namely α � 1, i.e. when the spin precesses quickly
and when the drift is slow. Then, the angle θ in (3.6) is close to π

2 . From (5.2), one readily
obtains

ψ+(x, t) � 1

(2π)3/4σ 1/2

∫ +∞

−∞
dk e−k2+ikX e−iωt

√
1+(k/α)2/2, (A.1)

and ψ−(x, t) = iψ+(−x, t). Taking advantage of the Gaussian cut-off, the square-root can be
safely expanded when k

α
∼ 1

α

 1; the resulting Gaussian integrals are readily evaluated, and

one eventually finds the result given in (5.8).
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Figure 7. Kernel F(X, t) defined in (A.6) for the convolution (see (A.4)).

The other case, α 
 1, (swift drift and slow precession) is much more involved, due to
the fact that the limit α → 0 is highly singular. From (3.6), the expression of ψ+ is

ψ+(x, t) = 1

(2π)3/4σ 1/2

∫ +∞

−∞
dk e−k2+ikX e−i vt

2σ

√
k2+α2

, (A.2)

and one still has |ψ−(x, t)| = |ψ+(−x, t)|. No simple approximation seems possible on such
an expression but, since one expects that the rapidly moving peak around x ∼ vt

2 be slightly
modulated by the precession, it is tempting to write an approximation using a convolution
integral. For that purpose, we rewrite (A.2) as follows:

ψ+(x, t) = 1

(2π)3/4σ 1/2

∫ +∞

−∞
dk eikX e−k2−ik vt

2σ ei vt
2σ

(k−
√

k2+α2). (A.3)

By the convolution theorem, this means that ψ+ can be expressed as

ψ+(x, t) = 1

23/4π1/4σ 1/2

∫ +∞

−∞
dX′ e− 1

4 (X−X′− vt
2σ )

2

F(X′, t), (A.4)

where F(X, t) is the Fourier transform:

F(X, t) = 1

2π

∫ +∞

−∞
dk eikX ei vt

2σ
(k−

√
k2+α2). (A.5)

Note that for α = 0, F (X) reduces to the Dirac function δ(X). Now, we expand the (small)
phase factor as k −

√
k2 + α2 � k − |k|(1 + α2

2k2

)
, allowing us to write

F(X, t) � f (X, t) − f

(
X +

vt

2σ
, t

)
(A.6)

where the function f is defined as

f (X, t) = 1

2π

∫ +∞

0
dk eiX[k−α2vt/(4σXk)]. (A.7)

This function can be expressed with the Hankel functions H(1,2)
ν (z) [22]. A somewhat tedious

calculation yields

f (X, t) = α

4
sgn(X)

√
vt

σ |X|H
(2)
1

(
α

√
vt

σ
|X|

)
. (A.8)
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By (A.6), this completes the determination of the kernel F(X, t); nevertheless, analysis reveals
that the second term in (A.6) is quickly negligible, because of the rapid translation of each
well-defined peak, so that one nearly always has F(X, t) � f (X, t). Figure 7 shows the
variation of |F(X, t)| as a function of the reduced abscissa X = x

σ
, at short and long times.

In all cases, the strong peak in F(X, t) near X = 0 explains the persistence of the two main
peaks in the density P(x, t), whereas slowly decreasing (∼X−1/2) oscillations are responsible
for the secondary small peaks located just behind the main one. The minima arise from the
zeroes of the Y1 Bessel function included in H

(2)
1 , which becomes denser and denser as time

goes on; this can explain that at large times, the moving peaks for α 
 1 eventually grows up
(see figure 4, upper left).
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